Determining subject specific torque parameters for use in a torque driven simulation model of dynamic jumping
نویسنده
چکیده
This paper describes a method for defining the maximum torque which can be produced at a joint from isovelocity torque measurements on an individual. The method is applied to an elite male gymnast in order to calculate subject specific joint torque parameters for the knee joint. Isovelocity knee extension torque data were collected for the gymnast using a two repetition concentric-eccentric protocol over a 75° range of crank motion at preset crank angular velocities ranging from 20°s to 250°s. During these isovelocity movements, differences of up to 35° were found between the angle of the dynamometer crank and the knee joint angle of the subject. In addition faster preset crank angular velocities gave smaller ranges of isovelocity motion for both the crank and joint. The simulation of an isovelocity movement at a joint angular velocity of 150°s showed that, for realistic series elastic component extensions, the angular velocity of the joint can be assumed to be the same as the angular velocity of the contractile component during the majority of the isovelocity trial. Fitting an 18 parameter exponential function to experimental isovelocity joint torque / angle / angular velocity data resulted in a surface which was wellbehaved over the complete range of angular velocities and within the specified range of joint angles used to calculate the surface.
منابع مشابه
The influence of simulation model complexity on the estimation of internal loading in gymnastics landings.
Evaluating landing technique using a computer simulation model of a gymnast and landing mat could be a useful tool when attempting to assess injury risk. The aims of this study were: (1) to investigate whether a subject-specific torque-driven or a subject-specific muscle-driven model of a gymnast is better at matching experimental ground reaction forces and kinematics during gymnastics landings...
متن کاملDetermining effective subject-specific strength levels for forward dives using computer simulations of recorded performances.
This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to determine appropriate subject-specific strength parameters for use in the simulation of forward dives. Kinematic data were obtained using high-speed video recordings of performances of a forward dive pike (101B) and a forward 2 1/2 somers...
متن کاملEvaluation of a torque-driven model of jumping for height.
This study used an optimization procedure to evaluate an 8-segment torque-driven subject-specific computer simulation model of the takeoff phase in running jumps for height. Kinetic and kinematic data were obtained on a running jump performed by an elite male high jumper. Torque generator activation timings were varied to minimize the difference between simulation and performance in terms of ki...
متن کاملDynamic Performance Analysis of High-Frequency Signal Injection Based Sensorless Methods for Interior Permanent Magnet Synchronous Motors
This paper focuses on three commonly used sensorless methods based on high-frequency signal injection; namely, the rotating sinusoidal injection in the stationary reference frame, the pulsating sinusoidal injection in the estimated synchronous reference frame, and the pulsating square wave injection in the estimated synchronous reference frame. Although these methods have found applications in ...
متن کاملDynamics of a Running Below-Knee Prosthesis Compared to Those of a Normal Subject
The normal human running has been simulated by two-dimensional biped model with 7 segments. Series of normal running experiments were performed and data of ground reaction forces measured by force plate was analyzed and was fitted to some Fourier series. The model is capable to simulate running for different ages and weights at different running speeds. A proportional derivative control algorit...
متن کامل